T Series A

2/4-Channel High-Performance Amplifier Platform with DSP

TOURING INSTALLATION

The T Series is a flexible and cost effective amplifier platform loudspeaker processor. The range consists of 2 and 4 channel models supporting channel powers from 750 W to 4000 W.

All models deliver high peak voltage allowing high SPL with single 8/16 ohm cabinets. The high voltage is also good for sharing power between the channels for applications such as bi-amped loudspeakers or subwoofers with passive tops.

The T Series offers analog and AES3 inputs. The AES3 solutions are optimized for daisy-chained distribution of 2-channel audio, enabling routing to many amplifiers without the need for external switches, repeaters, or splitters.

This helps in simplifying the

process of setting up a typical networked system.

PFC

2 or **4**

CHANNELS

SRM

DSP

ON BOARD

분바

ROUTING CHANNEL

The loudspeaker processing features set a new benchmark for cost-effective amplification for small and medium sized systems and stage monitoring applications.

The T Series can be controlled and configured in various ways:

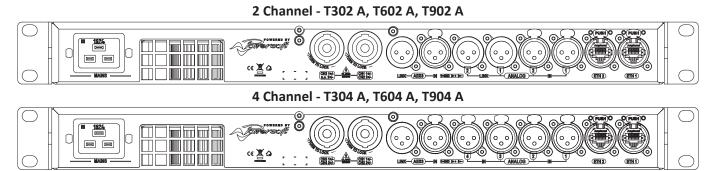
• through ArmoníaPlus, where it can be in mixed groups with advanced EQ together with other Powersoft products

• from the front panel display for things like preset recall (also per output), gain, delay, mute. This makes it the perfect match for powering the smaller solutions that are offered by rental companies. The display also shows the available headroom, along side with other status monitoring

NETWORK

• with the dedicated webapp, that runs on any device with a browser (e.g. a tablet) and access the amplifier via an external WiFi access point to control all parameters.

Armonía Plus


System Manager

- Renowned sound clarity
- Group controllable advanced EQ with raised cosine filters
- ► Large preset library
- Preset compatibility with X Series
- Long FIR filters (42.6 ms)

T Series A

2/4-Channel High-Performance Amplifier Platform with DSP

Specifications

2 (2 S) 2 XL 2 XLR 7302 A 2.57 110	R (femal LINK (m 7 T602 A 2.57 110	NL4) Igeable product of the second secon	4 er chann (LR (fem. (LR (mail (LR (mail (LR (mail 4) 4) 4) 4 dBu kHz +/- 70 dB Balance 55 dB pical < (0 pical < 0 6 mΩ	4 xLR (f ale) T604 A 2.57 110 0.5 dB ed	kon NL4 emale))								
2 XL 2 XLR 7302 A 2.57 110 125 dl 117 dl	(brid R (femal LINK (m / T602 A 2.57 110 2.57 110	igeable pa ie) ale) AES3 - 1 X UINK - 1) T902 A ⁻¹ 3.10 108 2 20 Hz - 20 < 20 Hz - 20	er chann (LR (fem. (LR (mail (LR (mail 2.57 110 4 dBu kHz +/- 70 dB Balance 65 dB Balance (big) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	4 XLR (f ale) T604 A 2.57 110 0.5 dB ed	emale) T904 A 3.10	Vrms								
2 XLR 1302 A 2.57 110 125 dl 117 dl	R (femal LINK (m 7 T602 A 2.57 110	e) ale) AES3 - 1 X LINK - 1 X T902 A ⁻ 3.10 108 20 Hz - 20 <0 Hz	LR (fem. (LR (mai F304 A 2.57 110 4 dBu kHz +/- 70 dB Balance 65 dB pical < (pical < (pical < (6 6 mΩ	4 xLR (f ale) T604 A 2.57 110 0.5 dB ed	T904 A 3.10	Vrms								
2 XLR 1302 A 2.57 110 125 dl 117 dl	LINK (m 4 T602 A 2.57 110 2 4 B-A Dyna	ale) AES3 - 1 X LINK - 1 X 3.10 108 20 Hz - 20 < 0 Hz - 20 < 0.1% (ty < 0.1% (ty 2 Tandem ^T	(LR (mail) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	T604 A 2.57 110 0.5 dB ed	T904 A 3.10	Vrms								
2 XLR 1302 A 2.57 110 125 dl 117 dl	LINK (m 4 T602 A 2.57 110 2 4 B-A Dyna	ale) AES3 - 1 X LINK - 1 X 3.10 108 20 Hz - 20 < 0 Hz - 20 < 0.1% (ty < 0.1% (ty 2 Tandem ^T	(LR (mail) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	T604 A 2.57 110 0.5 dB ed	T904 A 3.10	Vrms								
2.57 110 125 dl 117 dl	T602 A 2.57 110 24 Bit B-A Dyna	LINK - 1) T902 A ⁻ 3.10 108 20 Hz - 20 < 20 KΩ > < 0.1% (ty 2 Tandem ^T	(LR (mail) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	T604 A 2.57 110 0.5 dB ed	3.10	Vrms								
2.57 110 125 dl 117 dl	2.57 110 24 Bit B-A Dyna	3.10 108 2 20 Hz - 20 < 20 KΩ > < 0.1% (ty < 0.1% (ty 2 Tandem ^T	2.57 110 4 dBu kHz +/- 70 dB Balance 65 dB pical < 0 pical < 0 6 mΩ	2.57 110 0.5 dB ed	3.10	Vrms								
2.57 110 125 dl 117 dl	2.57 110 24 Bit B-A Dyna	3.10 108 2 20 Hz - 20 < 20 KΩ > < 0.1% (ty < 0.1% (ty 2 Tandem ^T	2.57 110 4 dBu kHz +/- 70 dB Balance 65 dB pical < 0 pical < 0 6 mΩ	2.57 110 0.5 dB ed	3.10	Vrms								
110 125 di 117 di	110 24 Bit B-A Dyna	108 2 20 Hz - 20 20kΩ > < 0.1% (ty 2 < 0.1% (ty 2 Tandem [*]	110 4 dBu kHz +/- 70 dB Balance 65 dB pical < 0 pical < 0 6 mΩ	110 0.5 dB ed 0.05%)										
125 di 117 di	24 Bit B-A Dyna	2 20 Hz - 20 20kΩ > < 0.1% (ty 2 Tandem ¹	4 dBu kHz +/- 70 dB Balance 65 dB pical < 0 6 mΩ	0.5 dB ed 0.05%)	108	dB(A								
117 di	24 Bit B-A Dyna	20 Hz - 20 < 20kΩ > < 0.1% (ty < 0.1% (ty 2 Tandem ¹	kHz +/- 70 dB Balance 65 dB pical < 0 pical < 0 6 mΩ	ed 0.05%)										
117 di	24 Bit B-A Dyna	< 20kΩ > < 0.1% (ty < 0.1% (ty 2 Tandem ¹	70 dB Balance 65 dB pical < 0 pical < 0 6 mΩ	ed 0.05%)										
117 di	24 Bit B-A Dyna	20kΩ > < 0.1% (ty < 0.1% (ty 2 Tandem [†]	Balance 65 dB pical < 0 pical < 0 6 mΩ).05%)										
117 di	24 Bit B-A Dyna	> < 0.1% (ty < 0.1% (ty 2 Tandem ¹	65 dB pical < 0 pical < 0 6 mΩ).05%)										
117 di	24 Bit B-A Dyna	< 0.1% (ty < 0.1% (ty 2 Tandem [*]	rpical < (rpical < (6 mΩ											
117 di	24 Bit B-A Dyna	< 0.1% (ty 2 Tandem ¹	pical < (6 mΩ											
117 di	24 Bit B-A Dyna	2 Tandem ¹	6 mΩ).05%)										
117 di	B-A Dyna	Tandem												
117 di	B-A Dyna					26 mΩ								
117 di	B-A Dyna				DSP									
	24 Bit	24 Bit Tandem™ @ 48 kHz 125 dB-A Dynamic Range - 0.005 % THD+N												
140 d	24 Bit Tandem™ @ 48 kHz 117 dB-A Dynamic Range - 0.003 % THD+N													
24 Bit @ 96 kHz 140 dB Dynamic Range - 0.0001 % THD+N														
Internal precision 32 bit floating point														
Latency 2.5 ms fixed latency architecture														
resets 256 MB (RAM) plus 512 MB flash for presets														
2 s (input) + 100 ms (output) for time alignment														
Raised-cosine, custom FIR, parametric IIR: peaking, hi/lo-shelving, all-pass, band-pass, band-stop, hi/lo-pass														
I	linear ph	ase (FIR)	Butterv	vorth,	ct (IIR)									
TruePower™, RMS voltage, RMS current, Peak limiter														
Active DampingControl™ and LiveImpedance™ measurement														
1.8" Colo	1.8" Colour TFT, 160x128 pixels, 600 nits													
8 pushbuttons with RGB backlight														
		s with RG	iB backli	ght										
	lePower	ePower™, RMS Active I LiveImpe	ePower™, RMS voltage, R Active DampingC LiveImpedance™ n	ePower™, RMS voltage, RMS curr Active DampingControl™ LiveImpedance™ measure	ePower™, RMS voltage, RMS current, Pea Active DampingControl™ and LiveImpedance™ measurement	Active DampingControl™ and LiveImpedance™ measurement								

\sim	~	
--------	---	--

	Output Stage	T302 A	T602 A	T902 A	T304 A	T604 A	T904 A
Maximum output power	per channel @ 8 Ω (symmetrical)*	1200 W	1300 W	1800 W	750 W	1250 W	1600 W
	per channel @ 4 Ω (symmetrical)*	1500 W	2500 W	3200 W	750 W	1500 W	2000 W
	per channel @ 2 Ω (symmetrical)*	1500 W	3000 W	4000 W	750 W	1500 W	1800 W
	per channel @ 8 Ω (asymmetrical)**	1300 W	1400 W	1800 W	1200 W	1250 W	1800 W
	per channel @ 4 Ω (asymmetrical)**	2200 W	2500 W	3600 W	1200 W	2100 W	2300 W
	per channel @ 2 Ω (asymmetrical)**	1600 W	3800 W	4600 W	1200 W	1600 W	1800 W
	@ 4 Ω Bridged	3000 W	6000 W	8000 W	1500 W	3000 W	3600 W
	@ 8 Ω Bridged	3000 W	5000 W	6400 W	1500 W	3000 W	4000 W
Ma	aximum unclipped output voltage	145 V_{peak}	145 V_{peak}	$175 V_{peak}$	145 V _{peak}	145 V_{peak}	$175 V_{peak}$
Ma	aximum output current	50 A_{peak}	100 A _{peak}	110 A _{peak}	50 A_{peak}	50 A_{peak}	55 A_{peak}
*Calculated by driving and loading symmetrically all the channels							

*Calculated by driving and loading symmetrically all the channels. **Calculated by driving all channels, but with every second channel at -6dB

Calculated by unving an channels, but with every second channel at out										
Power & Thermal			T302 A	T602 A	T902 A	T304 A	T604 A	T904 A		
	Standby	Power	13.5	15	15	15	15	15	W	
>	Idle	Power	23	32	33	32	32	34	W	
@ 120 V	1/8 Power	Power	517	824	1073	532	1054	1702	W	
		Current Draw	4.6	7.6	9.6	4.7	9.5	15	A _{rms}	
	@ 4Ω	Thermal Loss	485	678	931	537	1039	1713	BTU/h	
	Standby	Power	14	16	16	16	16	16	W	
≥	Idle	Power	23	32	33	32	32	34	W	
@ 230V	1/8	Power	527	839	1068	525	1027	1676	W	
0	Power	Current Draw	2.7	4.3	5.3	2.7	5.2	8.2	A_{rms}	
	@ 4Ω	Thermal Loss	517	731	913	512	944	1624	BTU/h	
	Power	supply	Universal regulated switch mode with PFC, SRM							
N	ominal vol	ltage (±10%)			100-240	VAC @ 50	0-60Hz			
	Operatin	g Voltage			90-264	VAC @ 50/	60 Hz			
AC Mains connector IEC C20 inlet (20 A max) region-specific power cord provided					ded					
Networking										
Star	ndards con	npliance		auto sens	ing Gigab	it Etherne	et IEEE 80	2.3ab		
Supported topologies Daisy chain, Star										
Rem	note interface ArmoníaPlus™									
Construction 1			T302 A	T602 A	T902	A T304	A T60	04 A T	904 A	
Dim	ensions 484 x 405 x 44.5 mm (19 x 16 x 1.75 in)									
Weight			6.7 kg	7.5 kg	7.8 kg	g 7.1 k	kg 7.5	5 kg 🗆	7.8 kg	

POWERSOFT.COM